129 research outputs found

    Re-evaluating high-frequency oscillation for ARDS: Would a targeted approach be successful?

    Full text link

    Utility and safety of draining pleural effusions in mechanically ventilated patients: a systematic review and meta-analysis

    Get PDF
    Abstract Introduction Pleural effusions are frequently drained in mechanically ventilated patients but the benefits and risks of this procedure are not well established. Methods We performed a literature search of multiple databases (MEDLINE, EMBASE, HEALTHSTAR, CINAHL) up to April 2010 to identify studies reporting clinical or physiological outcomes of mechanically ventilated critically ill patients who underwent drainage of pleural effusions. Studies were adjudicated for inclusion independently and in duplicate. Data on duration of ventilation and other clinical outcomes, oxygenation and lung mechanics, and adverse events were abstracted in duplicate independently. Results Nineteen observational studies (N = 1,124) met selection criteria. The mean PaO2:FiO2 ratio improved by 18% (95% confidence interval (CI) 5% to 33%, I 2 = 53.7%, five studies including 118 patients) after effusion drainage. Reported complication rates were low for pneumothorax (20 events in 14 studies including 965 patients; pooled mean 3.4%, 95% CI 1.7 to 6.5%, I 2 = 52.5%) and hemothorax (4 events in 10 studies including 721 patients; pooled mean 1.6%, 95% CI 0.8 to 3.3%, I 2 = 0%). The use of ultrasound guidance (either real-time or for site marking) was not associated with a statistically significant reduction in the risk of pneumothorax (OR = 0.32; 95% CI 0.08 to 1.19). Studies did not report duration of ventilation, length of stay in the intensive care unit or hospital, or mortality. Conclusions Drainage of pleural effusions in mechanically ventilated patients appears to improve oxygenation and is safe. We found no data to either support or refute claims of beneficial effects on clinically important outcomes such as duration of ventilation or length of stay

    Effect of different pressure-targeted modes of ventilation on transpulmonary pressure and inspiratory effort

    Get PDF
    Spontaneous breathing during mechanical ventilation improves gas exchange and might prevent ventilator- induced diaphragm dysfunction. In pressure-targeted modes, transpulmonary pressure (PL) is the sum of pres- sure generated by the ventilator and muscular pressure. When inspiratory effort increases, PL and tidal volume (VT) increase, potentially resulting in lung injury. This effect depends on the degree of inspiratory synchroniza- tion (i-sync); pressure-targeted modes can be classified into fully, partially, and non i-sync modes. A bench study [1] demonstrated that non-i-sync mode resulted in lower PL and VT than other modes, protecting the lungs from injury. We undertook to assess the effect of varying synchronization during pressure-targeted venti- lation in critically ill patients

    Designing a Bayesian adaptive clinical trial to evaluate novel mechanical ventilation strategies in acute respiratory failure using Integrated Nested Laplace Approximations

    Full text link
    Background: We aimed to design a Bayesian adaption trial through extensive simulations to determine values for key design parameters, demonstrate error rates, and establish the expected sample size. The complexity of the proposed outcome and analysis meant that Markov Chain Monte Carlo methods were required, resulting in an infeasible computational burden. Thus, we leveraged the Integrated Nested Laplace Approximations (INLA) algorithm, a fast approximation method, to ensure the feasibility of these simulations. Methods: We simulated Bayesian adaptive two-arm superiority trials that stratified participants into two disease severity states. The outcome was analyzed with proportional odds logistic regression. Trials were stopped for superiority or futility, separately for each state. We calculated the type I error and power across 64 scenarios that varied the stopping thresholds and the minimum sample size before commencing adaptive analyses. We incorporated dynamic borrowing and used INLA to compute the posterior distributions at each adaptive analysis. Designs that maintained a type I error below 5%, a power above 80%, and a feasible mean sample size were then evaluated across 22 scenarios that varied the odds ratios for the two severity states. Results: Power generally increased as the initial sample size and the threshold for declaring futility increased. Two designs were selected for further analysis. In the comprehensive simulations, the one design had a higher chance of reaching a trial conclusion before the maximum sample size and higher probability of declaring superiority when appropriate without a substantial increase in sample size for the more realistic scenarios and was selected as the trial design. Conclusions: We designed a Bayesian adaptive trial to evaluate novel strategies for ventilation using the INLA algorithm to and optimize the trial design through simulation

    Lung Recruitment Assessed by Electrical Impedance Tomography (RECRUIT):A Multicenter Study of COVID-19 Acute Respiratory Distress Syndrome

    Get PDF
    Rationale: Defining lung recruitability is needed for safe positive end-expiratory pressure (PEEP) selection in mechanically ventilated patients. However, there is no simple bedside method including both assessment of recruitability and risks of overdistension as well as personalized PEEP titration. Objectives: To describe the range of recruitability using electrical impedance tomography (EIT), effects of PEEP on recruitability, respiratory mechanics and gas exchange, and a method to select optimal EIT-based PEEP. Methods: This is the analysis of patients with coronavirus disease (COVID-19) from an ongoing multicenter prospective physiological study including patients with moderate-severe acute respiratory distress syndrome of different causes. EIT, ventilator data, hemodynamics, and arterial blood gases were obtained during PEEP titration maneuvers. EIT-based optimal PEEP was defined as the crossing point of the overdistension and collapse curves during a decremental PEEP trial. Recruitability was defined as the amount of modifiable collapse when increasing PEEP from 6 to 24 cm H2O (DCollapse24–6). Patients were classified as low, medium, or high recruiters on the basis of tertiles of DCollapse24–6. Measurements and Main Results: In 108 patients with COVID-19, recruitability varied from 0.3% to 66.9% and was unrelated to acute respiratory distress syndrome severity. Median EIT-based PEEP differed between groups: 10 versus 13.5 versus 15.5 cm H2O for low versus medium versus high recruitability (P, 0.05). This approach assigned a different PEEP level from the highest compliance approach in 81% of patients. The protocol was well tolerated; in four patients, the PEEP level did not reach 24 cm H2O because of hemodynamic instability. Conclusions: Recruitability varies widely among patients with COVID-19. EIT allows personalizing PEEP setting as a compromise between recruitability and overdistension.</p

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≄ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Diaphragm Activity and Function During Mechanical Ventilation

    No full text
    Previous studies suggest that mechanical ventilation (MV) can injure the diaphragm, potentially prolonging ventilator dependence. However, there are many potential insults to diaphragm function during critical illness and the extent to which diaphragm dysfunction is attributable to ventilation remains undefined in the clinical setting. We hypothesized that diaphragm inactivity and/or injurious diaphragm loading during MV mediate diaphragm injury in the clinical setting. To test this hypothesis, we first evaluated the feasibility, validity and reproducibility of novel methods for monitoring the diaphragm in the clinical setting. We found that neuromuscular coupling (NMC), a measure of diaphragm function, is influenced by inspiratory effort, airway flow and diaphragm motion during inspiration and that NMC varies considerably over time in healthy volunteers. We also found that right hemidiaphragm thickness can be measured reproducibly by ultrasound and that increasing diaphragm thickness during inspiration reflects active contractile activity rather than passive chest wall expansion. Subsequently, in a large prospective cohort study (n=107) we demonstrated that diaphragm thickness varies considerably over time in relation to the level of inspiratory effort. Changes in muscle thickness were associated with impaired muscle function. Finally, in a preliminary clinical study (n=10) we confirmed the feasibility of selectively enrolling patients at high risk of prolonged MV and of measuring diaphragm activity and patient-ventilator dyssynchrony on an hourly basis commencing shortly after intubation. We conclude that ultrasound is a useful clinical tool to monitor the diaphragm during MV; NMC measurement requires further standardization and validation. MV likely causes significant diaphragm injury in patients and titrating ventilatory support to maintain normal levels of inspiratory effort may protect the diaphragm from injury during MV. A detailed description of patient exposure to diaphragm inactivity and injurious loading during MV is feasible; such observations could inform the design of muscle-protective ventilation strategies.Ph.D
    • 

    corecore